12V Lifepo4 Lithium Battery Deep Cycle 12v 100ah Lithium Battery With BMS

0 comment
12V Lifepo4 Lithium Battery Deep Cycle 12v 100ah Lithium Battery With BMS

12V Lifepo4 Lithium Battery Deep Cycle 12v 100ah Lithium Battery With BMS

12V Lifepo4 Lithium Battery Deep Cycle 12v 100ah Lithium Battery With BMS

Item Specification Note
Nominal Voltage: 12V Any voltage can be customized
Nominal Capacity: 100Ah Any capacity can be customized
Discharge Cut-Off: 8V
Charge Cut-Off: 14.6V
Charge Current: 20A Free customization service
Cont. Discharge: 20A Free customization service
Peak Discharge: 30A Free customization service
Impedance: ≤200mΩ
Charge Temperature: 0℃ – 45℃
Discharge Temperature: -20℃ – 60℃
Charge Method: CC/CV
Life Cycle: 6000 80% DOD, Max. 95% DOD
BMS: With BMS
Dimension: 330mm*175mm*220mm Any dimension can be customized
Weight: 19KG

“It’s hard to imagine that this viscous liquid could be used for energy storage,” Mao says, “but what we find is that once we raise the temperature, it can store more energy, and more than many other electrolytes.”

That’s not entirely surprising, he says, since with other ionic liquids, as temperature increases, “the viscosity decreases and the energy-storage capacity increases.” But in this case, although the viscosity stays higher than that of other known electrolytes, the capacity increases very quickly with increasing temperature. That ends up giving the material an overall energy density — a measure of its ability to store electricity in a given volume — that exceeds those of many conventional electrolytes, and with greater stability and safety.

The key to its effectiveness is the way the molecules within the liquid automatically line themselves up, ending up in a layered configuration on the metal electrode surface. The molecules, which have a kind of tail on one end, line up with the heads facing outward toward the electrode or away from it, and the tails all cluster in the middle, forming a kind of sandwich. This is described as a self-assembled nanostructure.

Leave A Comment

Your email address will not be published. Required fields are marked *